GEYİKSTAR
  Matematik
 
DEnkLemler (konu-örnek sorular)
Birinci dereceden bir
bilinmeyenli denklemler

ve a 0 olmak üzere ax +b=0 şeklindeki eşitliklere birinci dereceden bir bilinmeyenli denklem denir. Denklemi sağlayan x sayısına denklemin kökü, bu kökün oluşturduğu kümeye çözüm kümesi denir.

ax+b=0 ise sayısı denklemin köküdür.

Çözüm kümesi:

Ç= olur.

Örnekler:

1) 6x +12 =0 denkemini çözüm kümesini bulunuz.

Çözüm:

6x+12=0  6x= -12
x= x=-2 Ç= olur.
2)-5x + 6 + x = 1 –x + 8 denkleminin çözüm kümesini bulunuz.

Çözüm:

-5x+ 6+ x =1 –x +8
-4x + 6 = -x + 9
-4x +x = 9-6
-3x=3
x= -1 Ç=
3) denkleminin çözüm kümesini bulunuz.
Çöm: denklemde paydası eşitlenir:



4) x-{2x-[x+1-(3x-5)]} = 3 ise x kaçtır?
Çözüm:

[x+1-3x+5]
[-2x+6]
{2x+2x-6}
x-4x+6 = 3
-3x =  x= 1 Sonuç: 1

5) 9(1-2x) – 5(2-5x) = 20 denkleminin çözüm kümesi nedir?
Çözüm:

9(1-2x) – 5(2-5x) = 20
9-18x-10+25x = 20
7x-1= 20
7x = 21
x = 3
Sonuç: 3

6) x 2 x 1
----- + ----- = ----- + 1----- denkleminin çözüm kümesi nedir?
3 5 5 3

Çözüm:
x 2 x 4
----- + ----- = ----- + -----
3 5 5 3
(5) (3) (3) (5)

5x+6 3x+20
------- = ------- = 5x + 6 = 3x+20
15 15

2x = 14  x = 7 Sonuç: 7


7) Kendisine katı eklendiğinde 72 eden sayı kaçtır?

Çözüm:


=
8) 2x+5=1 ise “x” kaçtır?

Çözüm:
2x = -4
x = -2  Sonuç = {-2}

9) Toplamları 77 olan iki sayıdan birinin 3 katı, aynı sayının 4 katıyla topl¤¤¤¤¤ eşittir.Bu Sayıların Küçük Olanı Kaçtır?

Çözüm:

3x+4x = 77
7x = 77
x = 7
3x = 33 Sonuç = {33}

10) Bu denklemdeki x’ in değerini bulunuz.
Çözüm:





x = 5 Sonuç = {5}

11) “x” in değerini bulunuz.
Çözüm:




- 45 = 5x-35
5x = -10
x = -2

Sonuç = {-2}

12) “x” in değerini bulunuz.

Çözüm:


3x-5 = -20
3x = -15
x = -5 Sonuç = {-5}

13) denklemini ve koşuluyla x’i bulunuz.
Çözüm

x=-1 fakat (x 1 ve x koşulundan dolayı

Ç=Ǿdir

14) için x ’in değeri kaçtır?
Çözüm
 x=3 (x 3 koşulundan dolayı )

Ç=Ǿdir


Birinci Dereceden İki
Bilinmeyenli Denklemler

olmak üzere açık önermesine birinci dereceden iki bilinmeyenli denklem denir.
denkleminde x ’e verilebilecek her değer için bir y değeri bulunabilir. Bulunan (x,y) ikililerinden her birine denklemin bir çözümü denir. Çözüm kümesi sonsuz elamanlıdır.

Örnekler:

1) denklemini çözüm kümesini bulup düzlemde göster.

x=0 için y=2.0-1(0,-1)
x=1 için y=2.1-1(1,1)
x=2 için y=2.2-1(2,3)
x=3 için y=2.3-1(3,5)
x için y=2x-1(y 2x –1)
__________________
KOMBİNASYON

Tanım: A, n elemanlı sonlu bir küme ve r ≤ n olmak üzere, A kümesinin r elemanlı her alt kümesine, bu kümenin r li kombinasyonu denir ve C (n, r) veya
biçiminde gösterilir.

ÖRNEKLER
1. Burcu Gizem ve Ecem’ den oluşan 3 kişilik bir gruptan;
a) Biri başkan, diğeri başkan yardımcısı olmak üzere, 2 kişi kaç türlü seçilebilir?
b) Bir yarışmaya gönderilmek üzere, 2 kişi kaç türlü seçilebilir?

Çözüm:

a) A= {Burcu, Gizem, Ecem} kümesinden; birincisi başkan, ikincisi başkan yardımcısı olmak üzere ikililer seçelim. Bu ikililer, A kümesinin ikili permütasyonlarıdır.

A kümesinin ikili permütasyonları
(sıralı ikililer)

(Burcu, Gizem) (Gizem,Ecem)
(Burcu, Ecem) (Ecem, Burcu)
(Gizem, Burcu) (Ecem, Gizem)

Bu sıralı ikililerin sayısı 6’dır. Bunu, P(3, 2) = 6 biçiminde yazarız. Burada ayrıca, (Burcu, Gizem) ve (Gizem, Burcu) ikililerin farklı permütasyonlar olduğu açıktır.
Permütasyonda sıra önemlidir.

b) A={Burcu,Gizem,Ecem}kümesinden,bir yarışmaya gönderilmek üzere seçilecek 2 kişilik kümeler oluşturalım.Bu kümeler, A kümesinin 2 elemanlı alt kümeleridir.

A kümesinin ikili alt kümeleri
(kombinasyonlar)

{Burcu, Gizem}
{Burcu, Ecem}
{Gizem, Ecem}
A kümesinin 2 elemanlı alt kümelerinin (kombinasyonlarının) sayısı 3 tür. Bunu C(3,2) = 3 biçiminde yazarız. Ayrıca, {Burcu, Gizem} ve {Gizem, Burcu}kümelerinin aynı olduğu açıktır.
Kombinasyonda sıra önemli değildir.


2. A= {a,b,c} kümesinin 2 elemanlı alt kümelerini ve 2 li permütasyonlarını yazalım.

Çözüm:
2 li alt kümeleri 2 li permütasyonları
(kombinasyonları) (sıralı ikililer)

{a,b} (a,b) (b,a)
{a,c} (a,c) (c,a)
{b,c} (b,c) (c,b)

Yukarıda gördüğünüz gibi, 3 elemanlı kümenin 2 li alt kümelerinin sayısı,
C(3,2)=3 ve 2 li permütasyonların sayısı p(3,2)=6 dır.

Bunu, 2 ! . C(3,2) = P(3,2) biçiminde ifade ederiz.



Teorem: r n olmak üzere, n elemanlı sonlu bir kümenin r li kombinasyonlarının sayısı,
C(n,r)= = dir.

İSPAT: n elemanlı bir kümenin, r elemanlı alt kümelerinin sayısı C(n,r) dir. Bu alt kümelerin her birindeki elemanların tüm sıralanışlarının (permütasyonlarının) sayısı da r! olduğundan r! . C(n,r)= P(n,r) yazabiliriz. Buradan,

C(n,r)= = = bulunur.

ÖRNEKLER:
1. A={1,2,3,4,5} kümesinin 3 elemanlı alt kümelerinin (3 lü kombinasyonlarının) sayısını bulalım.

Çözüm: A kümesinin 5 elemanlı olduğundan, 5 in 3 lü kombinasyonunu bulacağız.
1. YOL: C(5,3) bulunur.
2. YOL: C(5,3) bulunur.


2. 10 kişilik bir sporcu grubundan, 5 kişilik bir basketbol takımı kaç farklı biçimde oluşturulabilir.

Çözüm: 10 kişilik gruptan 5 kişi seçerken sıra önemli değildir. Örneğin, bu takımın {Ali, Can, Seçkin, Suat, Okan} veya {Can, Seçkin, Okan, Ali, Suat} olması farklı seçim olmaz. Bu nedenle seçimi kombinasyonla yaparız. O halde, oluşturulacak 5 kişilik grupların sayısı,
C(10,5) olur.

3. 2.C(n,2)=c(2n,1) ise n kaçtır?

Çözüm: 2.C(n,2)=C(2n,1)


2
n.(n-1)=2n n -3n=0 n=0 v n=3 bulunur. n=0 olmayacağından n=3 tür.

4. Herhangi 3 tanesi doğrusal olmayan 6 noktadan kaç doğru geçer.

Çözüm: 6 noktadan seçilecek olan herhangi iki noktanın sırası önemli değildir (Bu noktalardan herhangi ikisi A,B ise {A,B} ile {B,A} seçimleri aynı doğruyu gösterir.). O halde, oluşacak doğru sayısını, kombinasyonla buluruz. Bu durumda, 6 noktadan,

doğru geçer.

5. 3 erkek ve 2 bayandan oluşacak bir grup, 6 erkek ve 4 bayan arasından kaç türlü seçilebilir?

Çözüm: 6 erkek arasından 3 erkeği C(6,3); 4 bayan arsından 2 bayanı da C(4,2) kadar farklı şekilde seçebiliriz.

Genel çarpma kuralına göre bu seçimi;

türlü yapabiliriz.

6. n kenarlı konveks bir çokgenin köşegen sayısının olduğunu gösterelim.
Çözüm: n kenarlı bir çokgende n tane köşesi vardır. İki noktadan bir doğru geçtiğinden, köşegen sayısını bulmak için, n’in 2 li kombinasyonlarının sayısını bulmalıyız. Ancak, komşu olan iki köşeden köşegen geçemeyeceğinden(bunlar, çokgenin kenarlarıdır.), C(n,2) den, kenar sayısı olan n çıkarılır. O halde, n kenarlı çokgenin köşegen sayısı;
bulunur.


Kombinasyonla ilgili bazı özellikler:

1.
2.
3.
4.
Bu eşitliklerin ispatını, C(n,r) formülünden yararlanarak yapınız.



ÖRNEKLER:

1. C(5,0)+C(4,1)+C(3,3)-C(7,6) işlemini yapalım.

Çözüm: C(5,0)=1 , C(4,1)=4 , C(3,3)=1 ve (7,6)=7 oldugundan
C(5,0) + C(4,1) + C(3,3) – C(7,6) = 1 + 4 + 1 – 7 = -1 bulunur.

2. toplamını üstteki 4. özelliği kullanarak bulalım.

Çözüm: olur.



bulunur.

3. 5 farklı matematik ve 4 farklı Türkçe kitabından; 3 matematik ve 2 Türkçe kitabını, bir kitaplığın rafına kaç türlü yerleştirebiliriz?

Çözüm: 5 farklı matematik kitabı arasından; 3 matematik kitabı C(5,3) kadar farklı şekilde seçilebilir. 4 farklı Türkçe kitabından; 2 Türkçe kitabı da C(4,2) kadar farklı şekilde seçilebilir. Seçilen bu kitaplar,
C(
5,3) . C(4,2) . 5! = 10 . 6 . 120 = 7200 farklı sıralanabilir.
__________________
 
  tüm 41572 ziyaretçikişi burdaydı!  
 
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol